Module # 8 Correlation Analysis and ggplot2

 library(ggplot2)

data("mtcars")

#regression analysis of mpg to disp

reg <- lm(data = mtcars, mpg ~ disp)

summary(reg)

Call:

lm(formula = mpg ~ disp, data = mtcars)


Residuals:

    Min      1Q  Median      3Q     Max 

-4.8922 -2.2022 -0.9631  1.6272  7.2305 


Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 29.599855   1.229720  24.070  < 2e-16 ***

disp        -0.041215   0.004712  -8.747 9.38e-10 ***

---

Signif. codes:  

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 3.251 on 30 degrees of freedom

Multiple R-squared:  0.7183, Adjusted R-squared:  0.709 

F-statistic: 76.51 on 1 and 30 DF,  p-value: 9.38e-10

ggplot(mtcars, aes(x=mpg, y=disp)) + geom_point() + stat_smooth(method = "lm", col = "hotpink")




For this visualization, I decided to use the popular mtcars dataset and do a regression analysis of mpg to disp. With the scatterplot created, we can see that the variables have a negative relationship. This can also be seen in the summary of the analysis. The graph makes coming to this conclusion a lot easier for those who may not understand the numbers being presented in the summary. I believe that this is the best method of visualization because of its ease to understand, no key is necessary to understand the two variables relationship.


Comments

Popular posts from this blog

Module # 9 Visual multivariate