Module # 8 Correlation Analysis and ggplot2

library(ggplot2) data("mtcars") #regression analysis of mpg to disp reg <- lm(data = mtcars, mpg ~ disp) summary(reg) Call: lm(formula = mpg ~ disp, data = mtcars) Residuals: Min 1Q Median 3Q Max -4.8922 -2.2022 -0.9631 1.6272 7.2305 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 29.599855 1.229720 24.070 < 2e-16 *** disp -0.041215 0.004712 -8.747 9.38e-10 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.251 on 30 degrees of freedom Multiple R-squared: 0.7183, Adjusted R-squared: 0.709 F-statistic: 76.51 on 1 and 30 DF, p-value: 9.38e-10 ggplot(mtcars, aes(x=mpg, y=disp)) + geom_point() + stat_smooth(method = "lm", col = "hotpink") For t...